Largest product in a series
Largest product in a series
The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832.
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
1.滑动窗口法:
- 滑动窗口法:使用for循环模拟窗口移动
- 窗口最后一个数字不为0便将新数字乘入乘积,否则0的计数器++
- 窗口最前面的数字不为0便将最前面的数字除掉,否则0的计数器–
- 当0的计数器为零时,窗口乘积有效可尝试更新答案
注意:由于0乘除运算的特殊性,在滑动窗口法的基础上,还需要额外定义一个关于0的计数器
1 |
|
补充:滑动窗口分为动态窗口(双指针法) 与 静态窗口